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Development of composite coaxial cylinder 
stress analysis model and its application to 
SiC monofilament systems 

C. M. W A R W I C K * ,  T. W. CLYNE 
Department of Materials Science, University of Cambridge, Pembroke Street, Cambridge, UK 

An analytical model is presented allowing prediction of the principal stresses in a system 
composed of a set of coaxial cylinders, subject to temperature change or applied stress. The 
materials must exhibit transverse isotropy of stiffness and thermal expansivity. The model 
represents a development of an analysis published by Mikata and Taya, the modification 
allowing any number of component cylinders and a finite outer radius. Use of the model is 
illustrated by means of a series of examples involving SiC monofilaments. Application to the 
behaviour of composites containing many aligned fibres is demonstrated, using cylinder radii 
appropriate for the fibre volume fraction in the composite. It is shown by comparison with 
predictions from an Eshelby model that this is an acceptable approximation, preferable to the 
surrounding of fibre and matrix by an outer "composite" layer of infinite radius. 

1. Introduct ion 
There is considerable interest in analysing the stress 
state in a cylindrical rod surrounded by one or more 
coaxial cylindrical tubes bonded at the interfaces. The 
stresses of interest in such a system may arise from 
external tractions or from temperature changes. For 
example, if a fibre is to be coated with a thin protective 
layer before incorporation into composite material, it 
will be of interest to explore the generation of stresses 
so as to reduce the danger of cracking in this layer. 
Thin layers of Y203 have been found [1 3] to offer 
good protection in nickel, magnesium and titanium 
matrices, but stresses must be controlled if spallation 
of the coating is to be avoided. Furthermore, mono- 
filaments produced by chemical vapour deposition 
(CVD) routes already have a core and sheath structure 
and a fabricated long fibre composite will, in many 
respects, exhibit behaviour which can be modelled as a 
single fibre surrounded by the thickness of matrix 
appropriate for the fibre volume fraction in the com- 
posite. 

Several analytical models [4-6]  have been put for- 
ward to describe the (fully elastic) stress field in a set of 
two or more coaxial cylinders subject to thermo- 
mechanical loading. The most complete of these, due 
to Mikata and Taya [6], has been formulated for a 
four-layer structure composed of fibre, coating, matrix 
and (infinite) surrounding composite. The incorpora- 
tion of the surrounding composite seems physically 
appropriate, but it has the drawback that the axial 
force balance imposed as one of the boundary condi- 
tions becomes insensitive to the stresses in fibre and 
matrix, so that the predictions become somewhat in- 

consistent. Furthermore, the model is not exact in this 
form, because the properties taken for the composite 
are obtained by a weighting operation which is not 
rigorous. Finally, in the form presented, the model 
cannot be used to predict the stress state in a system, 
such as a single-coated fibre, having an outer free 
surface. 

In the present paper an outline is given of how the 
Mikata and Taya model can be modified to allow the 
system to be composed of any number of concentric 
cylinders, with the outer surface being free. For com- 
pleteness, an outline of all the mathematics involved 
is given in an Appendix, although this has much in 
common with the Mikata and Taya treatment. The 
new form of the model is then employed to explore 
several situations of practical interest involving SiC 
monofilaments. 

2. Model  development  
The model is based on the imposition of various 
boundary conditions for stress and strain compatibil- 
ity, giving a set of simultaneous equations which is 
solved by standard procedures. In the version de- 
scribed here, the stresses are induced by a uniform 
temperature change and/or  applied stress (axial and 
or radial). All the component materials are assumed to 
exhibit transverse isotropy about the cylinder axis in 
stiffness and thermal expansivity. This is a good ap- 
proximation for most cases of interest, although situ- 
ations can be imagined for which the assumption is 
not valid. (An example is provided by a polycrystalline 
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coating exhibiting a strong texture symmetrical about 
the radial direction.)* 

Development of the expressions allowing prediction 
of the final stress distribution is outlined in Appendix 
1. The procedure consists essentially of ensuring equi- 
librium of forces and strain compatibility, so as to 
devise the set of simultaneous equations given at the 
end of Appendix 1. In the present work these were 
solved by a Gaussian elimination method to give the 
principal stresses at a preselected set of radial lo- 
cations within each material. The procedure involves 
converting the five independent engineering constants 
exhibited by a transversely isotropic material to a 
stiffness tensor, using the matrix representation [7]. 
Although this falls within fairly standard elasticity 
theory, the relationship between engineering constants 
and stiffness tensor for a transversely isotropic elastic 
medium is outlined in Appendix 2, for ease of refer- 
ence. This paper therefore contains all the equations 
necessary to implement the model. 

3. Differential thermal contraction of 
free fibres 

A point of interest with regard to SiC monofilaments 
concerns the differences between tungsten- and 
carbon-cored products, in terms of thermal stresses. 
Carbon fibre cores have been preferred by some manu- 
facturers, although they need to be somewhat thicker 
than the tungsten wires and the carbon also has a 
larger mismatch of thermophysical properties with 
those of SiC than is the case for tungsten. This is 

apparen t  in Fig. 1, which compares the stress distribu- 
tions ~ after cooling through a 1000K temperature 
interval for both types of fibre, using dimensions typi- 
cal of commercial products in each case. Thermo- 
physical data used in this and following calculations 
are presented in Table L Although the modulus and 

�9 expansivity values of carbon fibre can vary over wide 
ranges, it is in general predicted that large stresses will 
build up in a carbon core as the temperature is 
changed. Cooling after fabrication should lead to axial 
compression, with tensile stresses in the hoop and 
radial directions. For a tungsten core, on the other 

hand, all core stresses are tensile, but the values are 
lower. The SiC also sustains stresses in both cases, 
although the significant values are confined to the 
interior regions near the core and even these are not 
much more than about 100 MPa. Again the stresses 
are higher for the carbon core. These internal stresses 
may not present a problem, and fracture of the fibre 
will in practice probably be more sensitive to factors 
such as flaws on the outer surface, but their existence 
should be appreciated. It may be noted that with the 
carbon cores, a compliant layer is sometimes created 
on the surface, designed partly to reduce internal 
stresses. For example, a thin graphitic layer with iso- 
tropic properties may be produced. The stress dis- 
tribution is then changed to that shown in Fig. 2. It 
can be seen that this thin compliant layer is actually 
predicted to have very little effect on the stresses 
around the core. 

There is also interest in the stresses generated in 
thin surface coatings during temperature changes. For 
example, yttria layers put  down on to SiC mono- 
filaments by sputter deposition should preferably be 
formed at high temperature, as this encourages a 
dense deposit [81. Typically, deposition will be follow- 
ed by a temperature decrease of several hundred de- 
grees. As yttria has a relatively high expansivity, this 
gives rise to the large tensile hoop and axial stresses 
shown in Fig. 3. These can readily cause cracking 
before the coated fibre can be fabricated into a com- 
posite. (Fortunately, there is scope during sputter de- 
position to stimulate large compressive stresses in the 
deposit by the so-called "atomic peening" effect [8], 
which can largely offset these tensile stresses and hence 
stabilize the coating against spallation.) 

4. Thermomechanical loading of 
composites 

Of course, the stress distributions are quite different 
once the fibres have been incorporated into a com- 
posite. In the presence of a metallic matrix, accurate 
calculation of the stresses is hampered by the fact that 
the matrix is likely to undergo plastic flow and to 
exhibit other non-elastic behaviour such as creep. 

TABLE I Properties used in calculations (typical values from various sources) 

Material Young's modulus (GPa) Shear Poisson's ratio CTE 
modulus, G L ( ink 1) 
(GPa) 

Axial Transverse In-plane Axial Axial Transverse 
E L ET v 12 V 13 (EL (ZT 

W 410 410 160 0.28 0.28 4.3 4.3 
SiC 420 420 180 0.17 0.17 4.0 4.0 
C fibre 200 20 20 0.25 0.20 0 10 
C graphite 25 25 10 0.23 0.23 7 7 
Y203 170 170 65 0.29 0.29 8.'1 8.1 
Ti 115 115 43 0.36 0.36 9.0 9.0 

* An analytical model could be constructed in which the constituents exhibit only orthotropic symmetry (which would allow treatment of a 
layer with symmetry of properties about the radial �9 although this would be at the cost of increased complexity. 

Note that the radial and hoop stresses in the central core layer will always be equal to each other. This can be.seen by substituting Equation 
A20 into Equation At8. 
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Figure 1 C o m p a r i s o n s  between the stress d i s t r ibu t ions  ar is ing from a 1000 K tempera tu re  decrease for (a) a W-cored  and (b) a C-cored SiC 
monof i lament .  

Nevertheless, a model of the current type can be useful 
in exploring the general nature of the stress fields, and 
in predicting the onset of inelastic behaviour. For 
example, when a SiC fibre (with the effect of the core 
neglected) is incorporated into a titanium matrix, so 
that it comprises about 35% by volume of the mater- 
ial, the stress state can be represented using the coaxial 
cylinder model with the components having the radii 

shown in Fig. 4. The axial and hoop stresses in the 
titanium at the free surface would correspond appro- 
ximately to the principal in-plane stresses that would 
be detected at the surface of such a composite. Indeed, 
the values predicted here are broadly consistent with 
recent X-ray diffraction data [9] obtained for a titan- 
ium-based alloy reinforced with approximately this 
content of monofilament. That broad agreement is 
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Figure 2 Stress distribution for a C-cored monofilament cooled through 1000 K with the outer 3 gm of the core composed of isotropic 
graphitic material. 
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Figure 3 Stress distribution for a W-cored SiC monofilament with a 2 gm thick yttria coating, after cc~oling through 500 K. 

obtained for a 500 K decrease, while the fabrication 
temperature is typically about 800 900 K above room 
temperature, is readily explained by high temperature 
stress relaxation. Note that relatively large deviatoric 
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stresses tend to be generated in the matrix close to the 
fibre, with the hoop and radial stresses being the pair 
exhibiting the largest difference. This commonly leads 
to matrix plasticity adjacent to fibres in metal matrix 
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Figure 4 Stress distribution for a SiC monofilament (with no core) surrounded by a thickness of Ti matrix corresponding to a composite 
containing about 35% fibre, after cooling through 500 K. 
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Figure 5 Predictions from the Eshelby equivalent homogeneous inclusion model for a Ti-35% SiC long-fibre composite cooled through 
500 K. The stress in the fibre is predicted to be uniform, while the stresses shown for the matrix are volume-averaged values. 

composites (MMCs) as a result of differential thermal 
contraction, with the metal predicted in this case to 
experience circumferential flow, but no movement in 
the axial direction. 

Of course, the model represents an approximation 
for this case, in that the Constraint effect of the sur- 

rounding composite material is being neglected. 
However, this probably makes little difference to the 
predictions in practice. To illustrate this, data are 
presented in Fig. 5 from the Eshelby equivalent homo- 
geneous inclusion model, using the mean field appro- 
ximation 1-10-12]. These also refer to a Ti-35 vol % 
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SiC long-fibre composite subjected to a 500 K temper- 
ature decrease. The stresses shown in the matrix are 
volume-averaged values, with the hoop and radial 
stresses contributing to a mean transverse value. I~t is 
clear that the stresses in the two predictions (Figs 4 
and 5) show no significant discrepancies, strongly 
suggesting that use of the current model with a single 

fibre and a free surface is acceptable for representing 
general features of the stress distribution within an 
actual composite, provided that it is recognized that 
the predicted stress state close to the free surface will 
not be accurate. 

Obviously, there is also interest in the response to 
external loading. As an example of the type of effect 
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Figure 6 Predicted stress distribution for a Ti 35% SiC composite with a tensile stress of 500 MPa  applied parallel to the fibre axis. 
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Figure 7 Predicted stress distribution for a Ti-35% SiC composite subjected to a 500 MPa  applied tensile stress along the fibre axis, together 
with residual stresses resulting from a 500 K temperature decrease. 
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that can be explored, Figs 6 and 7 show predicted 
distributions for an SiC fibre in a titanium matrix, 
subjected to a 500 MPa tensile stress along the fibre 
axis, with and without the internal stresses associated 
with a 500 K temperature decrease. In the absence of 
thermal residual stresses, the fibre carries much of the 
axial load and all the stresses in the matrix are rela- 
tively low. However, the thermal stresses cause signi- 
ficant changes, transferring much of the axial load to 
the matrix, which must now sustain large deviatoric 
stresses, particularly in the vicinity of the fibre. Evid- 
ently, close attention must be paid to thermomechani- 
cal history with such composites. 

5. Conclusion 
An analytical model has been outlined for prediction 
of the stress distribution within a composite system 
composed of a number of coaxial cylinders, perfectly 
bonded at the mating interfaces, as a result of sub- 
jecting this system to a uniform temperature change 
and/or  an applied stress in the axial and/or  radial 
directions. The model, which is mathematically rigor- 
ous, is a development of an analysis published by 
Mikata and Taya. The version presented here is more 
general, in that it allows any number of component 
cylinders in the model and is not restricted to having 
an outer layer which is infinitely thick. 

A number of predictions from the model have been 
presented, using SiC monofilaments subjected to dif- 
ferent situations. It has been shown, for example, that 
cooling of CVD monofilaments from the fabrication 
temperature can lead to large compressive axial stres- 
ses in a carbon core, while significant hoop and radial 
stresses appear in the SiC near the interface for both 
tungsten and carbon cores. Attention has also been 
drawn to the difficulties of avoiding large tensile stres- 
ses, and hence cracking, in coatings deposited (usually 
at elevated temperature)on the free surface of fibres. 
Such coatings may be applied for a variety of purposes 
and in many cases have a higher thermal expansivity 
than the fibre, leading to large tensile hoop and axial 
stresses on cooling. 

Finally, the model has been applied to predict the 
stress state within aligned continuous fibre com- 
posites, by choosing cylinder radii appropriate for the 
fibre volume fraction. This has been used, for example, 
to show that deviatoric stresses sufficient to cause 
matrix yielding are easily generated during post- 
fabrication cooling of metal matrix composites, parti- 
cularly in t he  region near the fibre. The predicted 
stress state near the free surface of the outer cylinder 
will obviously not correspond to that anywhere within 
the real composite, but a comparison with predictions 
obtained using the Eshelby equivalent homogeneous 
inclusion with a mean field approximation has shown 
that the predicted average stresses in both constituents 
are correct in the current model, and it seems advis- 
able not to use an outer "composite" layer of infinite 
thickness. The stress state in the matrix near the fibres 
is probably well represented by the proposed model, 
and it is only near the free surface that the predictions 
may deviate somewhat from the real situation. In 
practice, of course, plastic flow or other relaxation 

processes may cause the stress distribution in many 
composites to differ considerably from that predicted 
on the basis of elastic behaviour. 

Acknowledgements 
Financial support for one of us (CMW) was provided 
by BP plc. The authors are grateful for the collabora- 
tion and help offered by staff at BP Research Centre, 
Sunbury on Thames, particularly Dr C.W. Brown and 
Mr J. Robertson. 

Appendix 1. Stresses in concentric 
cylinders 
To find the stress distribution in a system of N concen- 
tric cylinders, after a temperature change, AT, with 
applied radial and longitudinal stresses, a0. and ao~. 

r, 0, z Radial, tangential and longitudinal coordi- 
nates 
Stiffness of layer n 
Stress in layer n 
Strain in layer n 
Transverse coefficient of thermal expan- 
sion (CTE) of layer n 
Longitudinal CTE of layer n 
Temperature difference in layer n -- AT 
Radial displacement in layer n 
Longitudinal displacement in layer n 
Radial, tangential and longitudinal dis- 
placements 

1., ~.~n("7. can("7 Parameters for layer n derived from stiff- 
ness and CTE 
Outer radius of layer n 
Integration constants 
Integration constants 

equilibrium relations in cylindrical co- 

c ( n )  

if(n) 

e (n) 

~(T.7 

T. 
u.(r) 
w.(z) 
bl r, 120 , H z 

r n 

A . ,  B .  
E . , F .  

The stress 
ordinates are 

1 C O'rO 1 ~ (ra~,7) + + 
r ~r r ~0 ~z 

- -  ~ O r  ) § - -  r 2 (r  2 (.7, r ~0 

1. ~ (.7 1 8 G~0 ) 
;Ur (r~=') + r ~0- 

4;' 0 (Ala) 
r 

+ gz - 0 (Alb) 

+ ~z - 0 (Alc) 

The stresses are given by 

47 ,~(.) ~ ( . 7 +  -~(.7 (.7 ly.) = ~i i~ . ,  cl2e0o + C(1")3e~ 7 - T~ (A2a) 

ff(z n) = t~(n) o(n) + F'(n) ~(n) F'(n) ~13Wrr "~ 13 gO0 + e(z "2 [3(3"7 ~ 3 3  T n (A2c) 

a~"z) = ..?r("7~("7~4.4 ~,= (A2d) 

cr~'] = -~4-4vF(")o(")to= (A2e) 

a~.o) = (C(1.~ _ t-(.) ~o("7 (A2f) " ~ 1 2 1  ~'r0 

where 13] "7 = \~ll[('(n) _1_ ~121~T'~(")~'("7 + C(x.)37(L.) (A3a) 

~(3.7 = 2C(~)2 ~(r.7 + .~r(")33 ,~e~(") (a3b) 

In terms of displacement, u, the strains are given by 

e~'~) - ~r (A4a) 

3 8 2 3  



1 ~u~"~ u~"~ 
e~  = r ~ + - r  (A4b) 

~u~n~ 
e~"] - (A,4c) 

~z 

e~' : 2 \ - ~ r r  + - ~ z - J  (A4d) 

1 (~u~ ") l~u~)~ (A4e) 
4"d = ~t ,  az + 7 ~ )  

,0 - ~ ~ 0  + ~r (A4f) 

Radial symmetry,  therefore 

giving: 

u~') = u,(r) (A5a) 

u~"' = 0 (a5b) 

u~') = w,(z) (A5c) 

e~. ) _ ~u. (A6a) 
~r 

~.) u. (A6b) Co0 - -  r 

e(~% ) = (A6c) 
5z 
(n) 

e~  ) = eoz = e~"o ) = 0 (A6d) 

which, on substitution into Equations A2 gives 

Un Ui, (n) ~ Wn = - + ~'~ r,  (~n, C(.t ~ q_ C.].) y C l 3 

(A7a) 

c"~ ~"" c','~ "~ c ~  ~w" - ~'," O'(0n0) = 12~-r "q- - -  "q- ~-Z Tn 

(A7b) 

C(.) ~ u. C(.) u, r~.) ~ w. (3"(n) = 1 3 ~  q- 13F  71- ~-~33 ~ ;  -- ~(3") Tn (AVc) 

o~  ) = 0 (A7d) 

(n) 
Cy0z = 0 (A7e) 

(n) 
%0 = 0 (A7f) 

Substitution into Equat ions A1 gives the differential 

1 du. u. I. d T. 
dr 2 + - (A8a) - -  r dr r 2 drr 

d2Wn 
- 0 (a8b) 

dz 2 

equations 

d2u. 

where l .  - (A9) c~"~ 
Because we are considering a uniform temperature 

change 

dT,  _ 0 (A10) 
dr 

So Equations A8 are solved by 

B. 
u . ( r )  = A . r  + - -  (Al l )  

g 

% ( z )  = E . z  + F .  (A12) 

The boundary  conditions imposed are 

rs~"~ ~ = o0, at r = rre (A13) 

U n = Un+ 1 , Wn = Wn+ 1 , cgT) = -.~("+1) at r =  r. (A14) 

for n = 1 to N - 1 
and 

~ f "  rs:"2rdr f o  ~ = oozrdr  w i t h r  o = 0 
n=l n-I 

(A15) 

Without  loss of generality 

F 1 = F 2 = . . .  = F i . . . . .  Fre_ 1 

Equat ion A14 leads to 

E 1 = E 2 . . . . .  E i 

= F N = 0  
(a16) 

= �9 ' =  Ere_l = Ere = E 
(A17) 

Substituting Equat ions A11 and A12 back into Equa-  
tion A7 gives 

+ C~"}3E-  [3~")AT (A!8a) 

c~00 = ,~1~1_.~. + 72 + c~"~ A, 

+ C~")3 E - ~ " ) A T  (A18b) 

= r~(") E 13~3") A T (A18c) c; =z 2 C~")3 A .  "]- '~33 -- 

Because 
T. = AT (A19) 

Ul(0) must  remain finite 

B 1 = 0 (A20) 

N o w  there are 2N simultaneous equations to set up 

(bl b2 

I al,1 

al,1 

al,1 

al, 2 

al,2 

6/1,2 

. . . . .  b2~) 

al ,N al,N+l al,N+2 

al,N all,N+1 al,N+2 

al ,N al,N+l al,N+2 

al,2N-1 

al, 2N - 1 

al,2N-1 

al, 2N 1 al, 2N 

al,2N 

A1 1 

A2 

A. N 

B2 

B3 

B N 

(A21a) 
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i.e each equat ion is of the form 

N N 

~, a~.iAi + ~ a~.(,,-u+3B ~ + G.2,~E = b~ 
/ = 1  j = 2  

f o r k  = I t o 2 N  (A21b) 

Starting with Equat ion A14 gives N -  1 equations 

N 

i=i 

(2) 2 + 2AzC~(r  ~ -- r~) 

+ 2A, C?~(r~-r  { ~) 

= 2A 1 C ( ~  r~ 2 

for k = 1 to N - -  1 

B~ 
A k r  k - -  A l e + i t  k + 

r k 

Bk+ 1 

Yk 

ak, k 

ak, k + l 

ak,,"r 1 

ak, N+k 

b~ 

- 0 (A22 )  

= r~ (A23a) 

- G A23b) 

1 
- A23c) 

t" k 

1 
- A23d) 

rk 

= 0 (A23e) 

Then Equat ion A14 gives another  N - 1 equations 

f o r / =  1 to N -  l , k = N + i  

rc ', - cl;  , [ c i ' Z  *' - " 

+ ~r FF(O " = - - L ~ - ' 1 3  __ C ( ' f l ) ]  AT(~(1 i) _ ~?+iI) (A24) 

a.,, = EC(I')~ + C(~'~ ] ( A 2 5 a )  

_ �9 ~ ( i+  1)q ( A 2 5 b )  ak, i + l  [ C ? ~  1) + =12 �9 

EC~I~2 - C~i{ I (A25c) 
ak, N + i _  t : r2 

_ ~C]i~ ~) -- C~~ 1)]  (A25d) 

CO(i) _ C(li~ t)] (A25e) ak, 2N = L ~ I  3 

bk = AT([3(~ ') - [3]' + ')) ( A 2 5 f )  

Equat ion A13 yields one more  equat ion 

+ C ~  ) ] + B N [- C(1 N) -- c(N1 ) ] 
L r? + Eci ' 

= (so, + 13([ ' ) A T  (A26) 

a~v,N = [ C ~  ) + C(~ ~] (A27a) 

I C?v,-C(~N1) ] (A27b) 
aN, 2N - 1 -~ r2 

aN,;~- = C(~ ) (A27c) 

bN = C~o~ + [3(~)AT (A27d) 

And Equat ion A15 gives the final simultaneous 
equation 

N 

i = 1  

(A28) 

+ 2AN_lC(l~3-1)(r~_l -- r ~ _ 2 )  

+ 2ANC( 5 G - 
N 

+ E Y'. ~33'(~(i){r 2, __ r2_ 1 )  ( A 2 9 )  
i = l  

vt~(l~ ,.2 (A30a) 

vc~z~.z _ r~) (A30b) a 2 N , 2  = ~ 1 3  \ ' 2  

aiN,, = 2C]i~(r~ - r2_~) (A30.c) 

9r - 11 /~2  a2N,N-1 = -~13 t'N 1 - -  r2-2) (A30d) 

a2N, N = 2C~"~(r~ - r~_ l )  (A30e) 

N 

a2N, 2~' = ~'. ~33,t~(il ~r2i - r/2- 1 ) (A30f) 
i = i  

N 

b2, ,. = % _ . r Z + A T E  f~(j'(r?-r~_,) (A30g) 
i = 1  

All other values ofak, s are set to zero and the simultan- 
eous equations may then be solved to give the values 
A.,  B. and E Which may be substituted into Equa t ion  
A18 to give the stresses. 

Appendix 2. The transversely isotropic 
stiffness tensor 
The engineering elastic constants  for a transversely 
isotropic material are: 

ET = in-plane Young's  modulus  

EL = longitudinal Young's  modulus  

Vl 2 = m-plane Poisson's ratio 

v13 = longitudinal Poisson's ratio 

GL = longitudinal shear modulus  

ET 
V31 ~--- V I 3 ~  L 

ET 
G T - 

2(1 + Vlz ) 

Let r, 0, z = cylindrical coordinates 

<y = stress 

e = strain 

Let 

or, = cyl (A31a) 

% o  = % (A31b) 

%= = cs3 (A31c) 

oe= = r 4 (A31d) 

3 8 2 5  



and 

0"rz = CY 5 

0- r O = 0-6 

err = e I 

eoo = e 2 

�9 e z z  = e 3 

eOz = e 4 

erz = e 5 

CrO = e 6 

with 

and 

0"1 = C l t e l  + C12e2 + C13e3 

Cy 2 ~- C 1 2 e  1 + C l l e  2 + C13e 3 

0"3 = C13el  + C13e2 + 633e3 

0"4 = C44 e4 

0"5 ~ C44e5 

1 
0"6 = 2 ( C l l  -- C12)e6 

el - 

c 2 = 

e 3 = 

e4 - 

0"1 ~ V 1 2  0"2 V13 0"3 

ET EL 

-- V12 ([5"1 + 0-2 V130-3 

ET EL 

-- V13 0-1 -- V130"2 -}- 0"3 

E L  

0"4 

GL 

0" 5 
e5 - GL 

2(1 + V12)0- 6 
e6 -- ET 

Clearly 

C44 = G L 

and 

O" 1 

O" 2 

O" 3 

C l l  C12 

C12 Cll 

C13 C13 

c,31 
C13 / 

C33 J 

ej. 

e2 

e3 

e 1 

e2 

e3 

= B 

= A 

e 1 

e2 

e3 

1/ET 

-- V12/ET I / E x  

- v~3/EL -- v13/E L 

I" ~ 2  

CY 3 

-- v12/E T -- v13/E L 

-- v13/E L 

1~EL 

(A 31 e) 

(A31f) 

(A32a) 

(A32b) 

(A32c) 

(A32d) 

(A32e) 

(A32f) 

(A33a) 

(A33b) 

(A33c) 

(A33d) 

(A33e) 

(A33f) 

(A34a) 

(A34b) 

(A34c) 

(A34d) 

(A34e) 

(A34f) 

(A35) 

(A36) 

CY 1 

(Y2 

(Y3 

(A37) 

Hence 
B = A 1 (A38) 

| [ l Vf3 + V12 ( V12 V23~ 

det(A) = ~ /~2 E L  E T  E T  k E T  E L L /  

_ 1 v23ET'~2 __(V12 _+_ v23ET~2~ 

k 
- ExE~ (A39) 

where 

( %ET  ( __ 13 ~"T ] 
k = l E L /] v12 + E~-] (A40) 

So 

B = A - 1  

/ !  43 
I ETE L E~ 

~ V12V13 -~- V13 

ET EL 

V12 V~3 V12V13 + V13 + 
ETE L E~ ExE L 

1 V~3 V12V13 + V13 

ETE L E~ ETE L 

v12v13+v13 1-v~2  

ExE L E~ 
(A41) 

and thus 

, 42a  Cll - EL 

ET( ELV12+ETV213 ) (A42b) 
C12 - E L k 

C13 = ET v13(1 + v12) k (A42c) 

] -- V22 
C33 ~ E L ~  (A42d) 

C44 = G L (A42e) 

The engineering elastic constants for an isotropic ma- 
terial are 

E = Young's modulus 

v = Poisson's ratio 

E 
G - 

2(1 + v) 

and Equations A42 simplify to 

C l l  = C33 

E(1 - v 2) 

k 
(A43a) 

C12 = C13 

Ev(1 + v) 

k 
(A43b) 

E 
C44 - 

2(1 + v) 
(A43c) 
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where 
= ( l - v : )  ~ - ( v + v : )  2 

= (1 - 2 v ) ( 1  + v)  2 (A44) 
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